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Message 
from branch 
A to branch B

Message from 
branch B to 
branch A

One possible scenario – in this case reported account balance is correct

Example Scenarios For Bank Example
Process/Event Graph
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If at the time of balance determination, the balance from branch A is in transit 
to branch B.  In this case balance determined at 3:00 pm is incorrect.

All messages in transit must be examined at time of observation. The correct 
total consists of balance at both branches and amount in any message in 
transit.

Example Scenarios For Bank Example
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Example Scenarios For Bank Example

If the clocks at the two branches are not perfectly synchronized a problem 
can arise.  Suppose that a transfer message is initiated at branch A at local 
time 3:01 pm.  This message arrives at branch B at 2:59 local time.  The 
balance calculated at 3:00 pm will now show the incorrect amount of $200.  
The amount is incorrectly counted twice.
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Some Terms
• Channel

– Exists between two processes if they exchange messages.

• State
– Sequence of messages that have been sent and received along 

channels incident with the process.

• Snapshot
– Records the state of a process.

• Global state
– The combined state of all processes.

• Distributed Snapshot
– A collection of snapshots, one for each process.
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Global States and Distributed Snapshots
• The problem  with a distributed system is that a true global state 

cannot be determined because of the time lapse associated with 
message transfer.

• We can attempt to define a global state by collecting snapshots 
from all processes.

• For example, in the figure on the next page, at the time of taking 
the snapshot, there is a message in transit on the <A,B> channel
(message 2), one in transit on the <A,C> channel (message 3), 
and one in transit on the <C,A> channel (message 4).  Messages 2
and 4 are properly represented, however, message 3 is not.  
– The distributed snapshot indicates that message 3 has been received but not 

yet sent!
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An Inconsistent Global State

Global snapshot indicates 
message 3 has not yet been sent, 
but in fact has been received.  
Snapshot of Process A shows no 
record of sending message 3, 
snapshot of Process C indicates 
receiving message 3!

Global State
Snapshot process A: Message 2 sent
Snapshot process B: Message 1 sent
Snapshot process C: Message 1 received

Message 3 received
Message 4 sent
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Consistent Global States
• We need the distributed snapshot to record a consistent 

global state.
• A global state is consistent if for every process state that 

records the receipt of a message, the sending of that 
message is recorded in the process state of the process 
that sent the message.

• In the previous slide, the global state was inconsistent 
because process C has recorded the receipt of message 
3, but no process has a record of having sent message 3.

• In contrast, the process/event graph on the next page 
illustrates a consistent global state.
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A Consistent Global State

Global State
Snapshot process A: Message 2 sent
Snapshot process B: Message 1 sent
Snapshot process C: Message 1 received

Message 3 sent
Message 4 sent
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Distributed Snapshot Algorithm
• Several different algorithms which record a consistent global state have been 

developed.  We’ll examine a fairly popular one as follows:
• The algorithm assumes that messages are delivered in the order that they are 

sent and no messages are lost.  ( A reliable transport protocol such as TCP 
satisfies these requirements.)

• The algorithm uses a special control message, called a marker.
• Some process initiates the algorithm by recording its state and sending a 

marker on all outgoing channels before any more messages are sent.
• Each process p then proceeds as follows.  Upon the first receipt of the marker

(say from process q), receiving process p performs the following:
1. Process p records its local state.
2. Process p records the state of the incoming channel from q to p as empty.
3. Process p propagates the marker to all of its neighbors along all outgoing 

channels.
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Distributed Snapshot Algorithm (cont.)

• The previous three steps must be perform atomically; i.e., no 
messages can be sent or received by process p until all three 
steps are performed.

• At any time after recording its state, when process p receives a 
marker from another incoming channel (say from process r), it 
performs the following action:

1. Process p records the state of the channel from r to p as the sequence of 
messages process p has received from process r from the time process p
recorded its local state Sp to the time it received the marker from process 
r.

• The algorithm terminates at a process once the marker has been 
received along every incoming channel.
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Distributed Snapshot Algorithm (cont.)

• The following points can be made about this algorithm:
– Since any process may start the algorithm by sending out a marker, if 

several nodes independently decided to record their state and send out 
the marker, the algorithm will still work properly.

– The algorithm will terminate in a finite amount of time, if every message 
is delivered in finite time.

– Since this is a distributed algorithm, each process is responsible for 
recording its own state and the state of all incoming channels.

– Once all of the states have been recorded (the algorithm has terminated 
at all processes), the consistent global state obtained by the algorithm 
can be assembled by having every process send the state data that it has 
recorded along every outgoing channel and having every process 
forward the state data that it receives along every outgoing channel.  
Alternatively, the initiating process could poll all processes to acquire 
the global state.
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Distributed Snapshot Algorithm - Example

Four processes are 
each represented by a 
node in the graph, and 
each unidirectional 
channel is represented 
by an edge between the 
two nodes with the 
direction indicated by 
the arrowhead.



CGS 3763: OS Concepts  (Distributed Process Management)       Page 14 © Mark Llewellyn

Distributed Snapshot Algorithm - Example

Process 4
Outgoing channels
3 sent1, 2, 3
Incoming channels
2 received 1, 2 stored 3, 4

Process 2
Outgoing channels
3 sent 1, 2, 3, 4
4 sent 1, 2, 3, 4
Incoming channels
1 received 1, 2, 3, 4 stored 5, 6
3 received 1, 2, 3, 4, 5, 6, 7, 8

Process 3
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6, 7, 8
Incoming channels
1 received 1, 2, 3 stored 4, 5, 6
2 received 1, 2, 3 stored 4
4 received 1, 2, 3

Process 1
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6
3 sent 1, 2, 3, 4, 5, 6
Incoming channels

Process 1 initiates 
after sending 6 

messages

Process 4 initiates 
after sending 3 

messages

Process 2 sent four messages on each of the two 
outgoing channels prior to recording its states.  Process 
2 received 4 messages from process 1 before recording 
its state, leaving messages 5 and 6 to be associated 
with the channel.

Process 3 sent 8 messages on its outgoing channel prior to 
recording its state.  Process 3 received 3 messages from process
1 before recording its state, leaving messages 4, 5, and 6 to be
associated with the channel.  Process 3 received 3 messages 
from process 2 recording its state, leaving message 4 to be 
associated with the channel.  Process 3 received 3 messages 
from process 4.
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Distributed Snapshot Algorithm - Example

Process 4
Outgoing channels
3 sent 1, 2, 3
Incoming channels
2 received 1, 2 stored 3, 4

Process 2
Outgoing channels
3 sent 1, 2, 3, 4
4 sent 1, 2, 3, 4
Incoming channels
1 received 1, 2, 3, 4 stored 5, 6
3 received 1, 2, 3, 4, 5, 6, 7, 8

Process 3
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6, 7, 8
Incoming channels
1 received 1, 2, 3 stored 4, 5, 6
2 received 1, 2, 3 stored 4
4 received 1, 2, 3

Process 1
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6
3 sent 1, 2, 3, 4, 5, 6
Incoming channels

Snapshot consistency check:  Have all messages recorded as sent been either received or recorded as in transit?

Process 1: sent 6 messages to process 2 – process 2 has recorded 4 messages with 2 messages in the channel.

Process 1: sent 6 messages to process 3 – process 3 has recorded 3 messages with 3 messages in the channel.

Process 2: sent 4 messages to process 3 – process 3 has recorded 3 messages with 1 message in the channel.

Process 2: sent 4 messages to process 4 – process 4 has recorded 2 messages with 2 messages in the channel.

Process 3: sent 8 messages to process 2 – process 2 has recorded 8 messages

Process 4: sent 3 messages to process 3 – process 3 has recorded 3 messages

All messages sent by all processes have either been received or are in the channel: snapshot is consistent.
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Distributed Mutual Exclusion Concepts
• Whenever two or more processes compete for the use of system resources, 

there is a need for a mechanism to enforce mutual exclusion.
• Any facility that is to provide support for mutual exclusion should meet the 

following criteria:
– Mutual exclusion must be enforced: only one process at a time is allowed in its 

critical section.
– A process that halts in its noncritical section must do so without interfering with 

other processes.
– It must not be possible for a process requiring access to a critical section to be 

delayed indefinitely: no deadlock or starvation.
– When no process is in a critical section, any process that requests entry to its 

critical section must be permitted to enter without delay.
– No assumptions are made about relative process speeds or number of processors.
– A process remains inside its critical section for a finite time only.
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Distributed Mutual Exclusion Concepts

RPj = Resource-controlling process in system j

Pji = User process I in system j

Rji = Resource I in system j
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Centralized Algorithm for Mutual Exclusion
• One node is designated as the control node.
• This node control access to all shared objects.
• Two key properties of the centralized algorithm are:

– Only the control node makes resource-allocation decision.
– All necessary information is concentrated in the control node, including the 

identity and location of all resources and the allocation status of each 
resource.

• The centralized approach is straightforward, and it is easy to see how 
mutual exclusion is enforced: The control node will not grant a request 
for a resource until that resource is released by the process currently 
holding it.

• The centralized approach has severe drawbacks: (1) If the control node 
fails, mutual exclusion breaks down. (2) every allocation/deallocation 
requires an exchange of messages resulting in a bottleneck at the control 
node.
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Distributed Algorithm
• All nodes have equal amount of information, on average.

• Each node has only a partial picture of the total system 
and must make decisions based on this information.

• All nodes bear equal responsibility for the final decision.

• All nodes expend equal effort, on average, in effecting a 
final decision.

• Failure of a node, in general, does not result in a total 
system collapse.

• There exits no system-wide common clock with which to 
regulate the time of events.



CGS 3763: OS Concepts  (Distributed Process Management)       Page 20 © Mark Llewellyn

Ordering of Events
• Events must be order to ensure mutual exclusion and avoid 

deadlock.

• Clocks are not synchronized.

• Communication delays.

• Need to consistently say that one event occurs before another 
event.

• Messages are sent when want to enter critical section and when 
leaving critical section.

• Time-stamping
– Orders events on a distributed system

– System clock is not used
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Time-Stamping Algorithm
• Each system on the network maintains a counter which functions as a clock.
• Each site has a numerical identifier.
• When a message is received, the receiving system sets is counter to one more than the 

maximum of its current value and the incoming time-stamp (counter).
• If two messages have the same time-stamp, they are ordered by the number of their 

sites.
• Messages have the form: (m, Ti, i) where m = the message content, Ti = the timestamp 

for the message set equal to Ci, and i = numerical identifier for the site.
• When a message is received, the receiving site j sets its clock to one more than the 

maximum of its current value and the incoming timestamp: Cj = 1 + max[Cj, Ti].
• At each site, the ordering of event is determine by the following rules:  For a message x

from site i and a message y from site j, x is said to precede y if one of the following 
conditions holds: (1) if Ti < Tj or (2) Ti = Tj and i < j.

• For this method to work, each message is sent from one process to all other processes.
– Ensures all sites have same ordering of messages.
– For mutual exclusion and deadlock all processes must be aware of the situation.
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Time-Stamping Algorithm - Example

At time 0, P1
transmits message 
a and increments 

its clock by 1

Message a received by P2 and P3 .  Since 
both local clocks have time 0, they are reset 
to 2 = 1 + max[0,1].

P2 issues message x, first 
incrementing its clock to 3.  
Upon receipt of this message 
both P1 and P3 both increment 
their clocks to 4.

1

2

3

P1 issues message b
and P3 issues 

message j at about 
the same time, with 

the same timestamp.

4

After all events have occurred, 
the ordering of messages is
the same at all sites, namely

{a, x, b, j}

5
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Time-Stamping Algorithm – Another Example

Verify that the order of events (messages 
received) at each site is {a, q}.
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Deadlock in Resource Allocation

• Deadlock in resource allocation exists only if all 
of the following conditions are met:
– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• The aim of an algorithm that deals with deadlock 
is either to prevent the formation of a circular 
wait or to detect its actual or potential occurrence.
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Phantom DeadlockP1 is halted 
waiting for a 
resource held 
by P2.  P1
holds RB

P1 is halted waiting 
for a resource held 
by P2.  P3 holds RA

P3 releases RA

P3 requests RB

(a) If P3’s release of RA arrives before 
its request for RB then all is OK

(b) If P3’s release of RA arrives after its
request for RB then deadlock may be 
falsely detected
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Deadlock Prevention
• Circular-wait condition can be prevented by defining a 

linear ordering of resource types.

• Hold-and-wait condition can be prevented by requiring 
that a process request all of its required resource at one 
time, and blocking the process until all requests can be 
granted simultaneously.
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Deadlock Avoidance
• Distributed deadlock avoidance is impractical

– Every node must keep track of the global state of the 
system.

– The process of checking for a safe global state must 
be mutually exclusive.

– Checking for safe states involves considerable 
processing overhead for a distributed system with a 
large number of processes and resources.
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Distributed Deadlock Detection
• Each site only knows about its own resources.

– Deadlock may involve distributed resources

• Centralized control – one site is responsible for deadlock 
detection.

• Hierarchical control – lowest node above the nodes 
involved in deadlock.

• Distributed control – all processes cooperate in the 
deadlock detection function.
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Summary of Distributed Deadlock Detection Strategies

May be difficult 
to configure the 
system so that 
most potential 
deadlocks are 
localized; 
otherwise there 
may actually be 
more overhead 
than in a 
distributed 
approach.

Weaknesses WeaknessesStrengthsStrengthsWeaknessesStrengths

Deadlock 
resolution is 
cumbersome 
because several 
sites may detect 
the same 
deadlock and 
may not be 
aware of other 
nodes involved 
in the deadlock.

Algorithms are 
difficult to 
design because 
of timing 
considerations.

Not vulnerable 
to single point 
failure.

No node is 
swamped with 
deadlock 
detection 
activity.

Not vulnerable 
to single point 
failure.

Deadlock 
resolution 
activity is 
limited if most 
potential 
deadlocks are 
relatively 
localized.

Considerable 
communications 
overhead; every 
node must send 
state 
information to 
the central node.

Vulnerable to 
the failure of the 
central node.

Algorithms are 
conceptually 
simple and easy 
to implement.

Central site has 
complete 
information and 
can optimally 
resolve 
deadlocks.

Distributed AlgorithmsHierarchical AlgorithmsCentralized Algorithms


