
CGS 3763: OS Concepts (Distributed Process Management) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Distributed Process Management – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: OS Concepts (Distributed Process Management) Page 2 © Mark Llewellyn

Message
from branch
A to branch B

Message from
branch B to
branch A

One possible scenario – in this case reported account balance is correct

Example Scenarios For Bank Example
Process/Event Graph

CGS 3763: OS Concepts (Distributed Process Management) Page 3 © Mark Llewellyn

If at the time of balance determination, the balance from branch A is in transit
to branch B. In this case balance determined at 3:00 pm is incorrect.

All messages in transit must be examined at time of observation. The correct
total consists of balance at both branches and amount in any message in
transit.

Example Scenarios For Bank Example

CGS 3763: OS Concepts (Distributed Process Management) Page 4 © Mark Llewellyn

Example Scenarios For Bank Example

If the clocks at the two branches are not perfectly synchronized a problem
can arise. Suppose that a transfer message is initiated at branch A at local
time 3:01 pm. This message arrives at branch B at 2:59 local time. The
balance calculated at 3:00 pm will now show the incorrect amount of $200.
The amount is incorrectly counted twice.

CGS 3763: OS Concepts (Distributed Process Management) Page 5 © Mark Llewellyn

Some Terms
• Channel

– Exists between two processes if they exchange messages.

• State
– Sequence of messages that have been sent and received along

channels incident with the process.

• Snapshot
– Records the state of a process.

• Global state
– The combined state of all processes.

• Distributed Snapshot
– A collection of snapshots, one for each process.

CGS 3763: OS Concepts (Distributed Process Management) Page 6 © Mark Llewellyn

Global States and Distributed Snapshots
• The problem with a distributed system is that a true global state

cannot be determined because of the time lapse associated with
message transfer.

• We can attempt to define a global state by collecting snapshots
from all processes.

• For example, in the figure on the next page, at the time of taking
the snapshot, there is a message in transit on the <A,B> channel
(message 2), one in transit on the <A,C> channel (message 3),
and one in transit on the <C,A> channel (message 4). Messages 2
and 4 are properly represented, however, message 3 is not.
– The distributed snapshot indicates that message 3 has been received but not

yet sent!

CGS 3763: OS Concepts (Distributed Process Management) Page 7 © Mark Llewellyn

An Inconsistent Global State

Global snapshot indicates
message 3 has not yet been sent,
but in fact has been received.
Snapshot of Process A shows no
record of sending message 3,
snapshot of Process C indicates
receiving message 3!

Global State
Snapshot process A: Message 2 sent
Snapshot process B: Message 1 sent
Snapshot process C: Message 1 received

Message 3 received
Message 4 sent

CGS 3763: OS Concepts (Distributed Process Management) Page 8 © Mark Llewellyn

Consistent Global States
• We need the distributed snapshot to record a consistent

global state.
• A global state is consistent if for every process state that

records the receipt of a message, the sending of that
message is recorded in the process state of the process
that sent the message.

• In the previous slide, the global state was inconsistent
because process C has recorded the receipt of message
3, but no process has a record of having sent message 3.

• In contrast, the process/event graph on the next page
illustrates a consistent global state.

CGS 3763: OS Concepts (Distributed Process Management) Page 9 © Mark Llewellyn

A Consistent Global State

Global State
Snapshot process A: Message 2 sent
Snapshot process B: Message 1 sent
Snapshot process C: Message 1 received

Message 3 sent
Message 4 sent

CGS 3763: OS Concepts (Distributed Process Management) Page 10 © Mark Llewellyn

Distributed Snapshot Algorithm
• Several different algorithms which record a consistent global state have been

developed. We’ll examine a fairly popular one as follows:
• The algorithm assumes that messages are delivered in the order that they are

sent and no messages are lost. (A reliable transport protocol such as TCP
satisfies these requirements.)

• The algorithm uses a special control message, called a marker.
• Some process initiates the algorithm by recording its state and sending a

marker on all outgoing channels before any more messages are sent.
• Each process p then proceeds as follows. Upon the first receipt of the marker

(say from process q), receiving process p performs the following:
1. Process p records its local state.
2. Process p records the state of the incoming channel from q to p as empty.
3. Process p propagates the marker to all of its neighbors along all outgoing

channels.

CGS 3763: OS Concepts (Distributed Process Management) Page 11 © Mark Llewellyn

Distributed Snapshot Algorithm (cont.)

• The previous three steps must be perform atomically; i.e., no
messages can be sent or received by process p until all three
steps are performed.

• At any time after recording its state, when process p receives a
marker from another incoming channel (say from process r), it
performs the following action:

1. Process p records the state of the channel from r to p as the sequence of
messages process p has received from process r from the time process p
recorded its local state Sp to the time it received the marker from process
r.

• The algorithm terminates at a process once the marker has been
received along every incoming channel.

CGS 3763: OS Concepts (Distributed Process Management) Page 12 © Mark Llewellyn

Distributed Snapshot Algorithm (cont.)

• The following points can be made about this algorithm:
– Since any process may start the algorithm by sending out a marker, if

several nodes independently decided to record their state and send out
the marker, the algorithm will still work properly.

– The algorithm will terminate in a finite amount of time, if every message
is delivered in finite time.

– Since this is a distributed algorithm, each process is responsible for
recording its own state and the state of all incoming channels.

– Once all of the states have been recorded (the algorithm has terminated
at all processes), the consistent global state obtained by the algorithm
can be assembled by having every process send the state data that it has
recorded along every outgoing channel and having every process
forward the state data that it receives along every outgoing channel.
Alternatively, the initiating process could poll all processes to acquire
the global state.

CGS 3763: OS Concepts (Distributed Process Management) Page 13 © Mark Llewellyn

Distributed Snapshot Algorithm - Example

Four processes are
each represented by a
node in the graph, and
each unidirectional
channel is represented
by an edge between the
two nodes with the
direction indicated by
the arrowhead.

CGS 3763: OS Concepts (Distributed Process Management) Page 14 © Mark Llewellyn

Distributed Snapshot Algorithm - Example

Process 4
Outgoing channels
3 sent1, 2, 3
Incoming channels
2 received 1, 2 stored 3, 4

Process 2
Outgoing channels
3 sent 1, 2, 3, 4
4 sent 1, 2, 3, 4
Incoming channels
1 received 1, 2, 3, 4 stored 5, 6
3 received 1, 2, 3, 4, 5, 6, 7, 8

Process 3
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6, 7, 8
Incoming channels
1 received 1, 2, 3 stored 4, 5, 6
2 received 1, 2, 3 stored 4
4 received 1, 2, 3

Process 1
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6
3 sent 1, 2, 3, 4, 5, 6
Incoming channels

Process 1 initiates
after sending 6

messages

Process 4 initiates
after sending 3

messages

Process 2 sent four messages on each of the two
outgoing channels prior to recording its states. Process
2 received 4 messages from process 1 before recording
its state, leaving messages 5 and 6 to be associated
with the channel.

Process 3 sent 8 messages on its outgoing channel prior to
recording its state. Process 3 received 3 messages from process
1 before recording its state, leaving messages 4, 5, and 6 to be
associated with the channel. Process 3 received 3 messages
from process 2 recording its state, leaving message 4 to be
associated with the channel. Process 3 received 3 messages
from process 4.

CGS 3763: OS Concepts (Distributed Process Management) Page 15 © Mark Llewellyn

Distributed Snapshot Algorithm - Example

Process 4
Outgoing channels
3 sent 1, 2, 3
Incoming channels
2 received 1, 2 stored 3, 4

Process 2
Outgoing channels
3 sent 1, 2, 3, 4
4 sent 1, 2, 3, 4
Incoming channels
1 received 1, 2, 3, 4 stored 5, 6
3 received 1, 2, 3, 4, 5, 6, 7, 8

Process 3
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6, 7, 8
Incoming channels
1 received 1, 2, 3 stored 4, 5, 6
2 received 1, 2, 3 stored 4
4 received 1, 2, 3

Process 1
Outgoing channels
2 sent 1, 2, 3, 4, 5, 6
3 sent 1, 2, 3, 4, 5, 6
Incoming channels

Snapshot consistency check: Have all messages recorded as sent been either received or recorded as in transit?

Process 1: sent 6 messages to process 2 – process 2 has recorded 4 messages with 2 messages in the channel.

Process 1: sent 6 messages to process 3 – process 3 has recorded 3 messages with 3 messages in the channel.

Process 2: sent 4 messages to process 3 – process 3 has recorded 3 messages with 1 message in the channel.

Process 2: sent 4 messages to process 4 – process 4 has recorded 2 messages with 2 messages in the channel.

Process 3: sent 8 messages to process 2 – process 2 has recorded 8 messages

Process 4: sent 3 messages to process 3 – process 3 has recorded 3 messages

All messages sent by all processes have either been received or are in the channel: snapshot is consistent.

CGS 3763: OS Concepts (Distributed Process Management) Page 16 © Mark Llewellyn

Distributed Mutual Exclusion Concepts
• Whenever two or more processes compete for the use of system resources,

there is a need for a mechanism to enforce mutual exclusion.
• Any facility that is to provide support for mutual exclusion should meet the

following criteria:
– Mutual exclusion must be enforced: only one process at a time is allowed in its

critical section.
– A process that halts in its noncritical section must do so without interfering with

other processes.
– It must not be possible for a process requiring access to a critical section to be

delayed indefinitely: no deadlock or starvation.
– When no process is in a critical section, any process that requests entry to its

critical section must be permitted to enter without delay.
– No assumptions are made about relative process speeds or number of processors.
– A process remains inside its critical section for a finite time only.

CGS 3763: OS Concepts (Distributed Process Management) Page 17 © Mark Llewellyn

Distributed Mutual Exclusion Concepts

RPj = Resource-controlling process in system j

Pji = User process I in system j

Rji = Resource I in system j

CGS 3763: OS Concepts (Distributed Process Management) Page 18 © Mark Llewellyn

Centralized Algorithm for Mutual Exclusion
• One node is designated as the control node.
• This node control access to all shared objects.
• Two key properties of the centralized algorithm are:

– Only the control node makes resource-allocation decision.
– All necessary information is concentrated in the control node, including the

identity and location of all resources and the allocation status of each
resource.

• The centralized approach is straightforward, and it is easy to see how
mutual exclusion is enforced: The control node will not grant a request
for a resource until that resource is released by the process currently
holding it.

• The centralized approach has severe drawbacks: (1) If the control node
fails, mutual exclusion breaks down. (2) every allocation/deallocation
requires an exchange of messages resulting in a bottleneck at the control
node.

CGS 3763: OS Concepts (Distributed Process Management) Page 19 © Mark Llewellyn

Distributed Algorithm
• All nodes have equal amount of information, on average.

• Each node has only a partial picture of the total system
and must make decisions based on this information.

• All nodes bear equal responsibility for the final decision.

• All nodes expend equal effort, on average, in effecting a
final decision.

• Failure of a node, in general, does not result in a total
system collapse.

• There exits no system-wide common clock with which to
regulate the time of events.

CGS 3763: OS Concepts (Distributed Process Management) Page 20 © Mark Llewellyn

Ordering of Events
• Events must be order to ensure mutual exclusion and avoid

deadlock.

• Clocks are not synchronized.

• Communication delays.

• Need to consistently say that one event occurs before another
event.

• Messages are sent when want to enter critical section and when
leaving critical section.

• Time-stamping
– Orders events on a distributed system

– System clock is not used

CGS 3763: OS Concepts (Distributed Process Management) Page 21 © Mark Llewellyn

Time-Stamping Algorithm
• Each system on the network maintains a counter which functions as a clock.
• Each site has a numerical identifier.
• When a message is received, the receiving system sets is counter to one more than the

maximum of its current value and the incoming time-stamp (counter).
• If two messages have the same time-stamp, they are ordered by the number of their

sites.
• Messages have the form: (m, Ti, i) where m = the message content, Ti = the timestamp

for the message set equal to Ci, and i = numerical identifier for the site.
• When a message is received, the receiving site j sets its clock to one more than the

maximum of its current value and the incoming timestamp: Cj = 1 + max[Cj, Ti].
• At each site, the ordering of event is determine by the following rules: For a message x

from site i and a message y from site j, x is said to precede y if one of the following
conditions holds: (1) if Ti < Tj or (2) Ti = Tj and i < j.

• For this method to work, each message is sent from one process to all other processes.
– Ensures all sites have same ordering of messages.
– For mutual exclusion and deadlock all processes must be aware of the situation.

CGS 3763: OS Concepts (Distributed Process Management) Page 22 © Mark Llewellyn

Time-Stamping Algorithm - Example

At time 0, P1
transmits message
a and increments

its clock by 1

Message a received by P2 and P3 . Since
both local clocks have time 0, they are reset
to 2 = 1 + max[0,1].

P2 issues message x, first
incrementing its clock to 3.
Upon receipt of this message
both P1 and P3 both increment
their clocks to 4.

1

2

3

P1 issues message b
and P3 issues

message j at about
the same time, with

the same timestamp.

4

After all events have occurred,
the ordering of messages is
the same at all sites, namely

{a, x, b, j}

5

CGS 3763: OS Concepts (Distributed Process Management) Page 23 © Mark Llewellyn

Time-Stamping Algorithm – Another Example

Verify that the order of events (messages
received) at each site is {a, q}.

CGS 3763: OS Concepts (Distributed Process Management) Page 24 © Mark Llewellyn

Deadlock in Resource Allocation

• Deadlock in resource allocation exists only if all
of the following conditions are met:
– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• The aim of an algorithm that deals with deadlock
is either to prevent the formation of a circular
wait or to detect its actual or potential occurrence.

CGS 3763: OS Concepts (Distributed Process Management) Page 25 © Mark Llewellyn

Phantom DeadlockP1 is halted
waiting for a
resource held
by P2. P1
holds RB

P1 is halted waiting
for a resource held
by P2. P3 holds RA

P3 releases RA

P3 requests RB

(a) If P3’s release of RA arrives before
its request for RB then all is OK

(b) If P3’s release of RA arrives after its
request for RB then deadlock may be
falsely detected

CGS 3763: OS Concepts (Distributed Process Management) Page 26 © Mark Llewellyn

Deadlock Prevention
• Circular-wait condition can be prevented by defining a

linear ordering of resource types.

• Hold-and-wait condition can be prevented by requiring
that a process request all of its required resource at one
time, and blocking the process until all requests can be
granted simultaneously.

CGS 3763: OS Concepts (Distributed Process Management) Page 27 © Mark Llewellyn

Deadlock Avoidance
• Distributed deadlock avoidance is impractical

– Every node must keep track of the global state of the
system.

– The process of checking for a safe global state must
be mutually exclusive.

– Checking for safe states involves considerable
processing overhead for a distributed system with a
large number of processes and resources.

CGS 3763: OS Concepts (Distributed Process Management) Page 28 © Mark Llewellyn

Distributed Deadlock Detection
• Each site only knows about its own resources.

– Deadlock may involve distributed resources

• Centralized control – one site is responsible for deadlock
detection.

• Hierarchical control – lowest node above the nodes
involved in deadlock.

• Distributed control – all processes cooperate in the
deadlock detection function.

CGS 3763: OS Concepts (Distributed Process Management) Page 29 © Mark Llewellyn

Summary of Distributed Deadlock Detection Strategies

May be difficult
to configure the
system so that
most potential
deadlocks are
localized;
otherwise there
may actually be
more overhead
than in a
distributed
approach.

Weaknesses WeaknessesStrengthsStrengthsWeaknessesStrengths

Deadlock
resolution is
cumbersome
because several
sites may detect
the same
deadlock and
may not be
aware of other
nodes involved
in the deadlock.

Algorithms are
difficult to
design because
of timing
considerations.

Not vulnerable
to single point
failure.

No node is
swamped with
deadlock
detection
activity.

Not vulnerable
to single point
failure.

Deadlock
resolution
activity is
limited if most
potential
deadlocks are
relatively
localized.

Considerable
communications
overhead; every
node must send
state
information to
the central node.

Vulnerable to
the failure of the
central node.

Algorithms are
conceptually
simple and easy
to implement.

Central site has
complete
information and
can optimally
resolve
deadlocks.

Distributed AlgorithmsHierarchical AlgorithmsCentralized Algorithms

